skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sallum, Steph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Adaptive optics (AO) systems are critical in any application where highly resolved imaging or beam control must be performed through a dynamic medium. Such applications include astronomy and free-space optical communications, where light propagates through the atmosphere, as well as medical microscopy and vision science, where light propagates through biological tissues. Recent works have demonstrated common-path wavefront sensors (WFSs) for adaptive optics using the photonic lantern (PL), a slowly varying waveguide that can efficiently couple multi-moded light into single-mode fibers (SMFs). We use the SCExAO astrophotonics platform at the 8 m Subaru Telescope to show that spectral dispersion of lantern outputs can improve correction fidelity, culminating with an on-sky demonstration of real-time wavefront control. This is the first, to the best of our knowledge, result for either a spectrally dispersed or a photonic lantern wavefront sensor. Combined with the benefits offered by lanterns in precision spectroscopy, our results suggest the future possibility of a unified wavefront sensing spectrograph using compact photonic devices. 
    more » « less
  2. Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
  3. Schmidt, Dirk; Vernet, Elise; Jackson, Kathryn J (Ed.)
    We present progress on a conceptual design for a new Keck multi-conjugate adaptive optics system capable of visible light correction with a near-diffraction-limited spatial resolution. The KOLA (Keck Optical LGS AO) system will utilize a planned adaptive secondary mirror (ASM), 2 additional high-altitude deformable mirrors (DMs), and ≳ 8 laser guide stars (LGS) to sense and correct atmospheric turbulence. The field of regard for selecting guide stars will be 2’ and the corrected science field of view will be 60”. We describe science cases, system requirements, and performance simulations for the system performed with error budget spreadsheet tools and MAOS physical optics simulations. We will also present results from trade studies for the actuator count on the ASM. KOLA will feed a new optical imager and IFU spectrograph in addition to the planned Liger optical + infrared (λ > 850 nm) imager and IFU spectrograph. Performance simulations show KOLA will deliver a Strehl of 12% at g’, 21% at r’, 53% at Y, and 87% at K bands on axis with nearly uniform image quality over a 40”×40” field of view in the optical and over 60”×60” beyond 1 μm. Ultimately, the system will deliver spatial resolutions superior to HST and JWST (∼17 mas at r’-band) and comparable to the planned first-generation infrared AO systems for the ELTs. 
    more » « less
  4. Navarro, Ramón; Jedamzik, Ralf (Ed.)
  5. Abstract We present a direct imaging study of V892 Tau, a young Herbig Ae/Be star with a close-in stellar companion and circumbinary disk. Our observations consist of images acquired via Keck II/NIRC2 with nonredundant masking and the pyramid wavefront sensor at K band (2.12μm) and L band (3.78μm). Sensitivity to low-mass accreting companions and cool disk material is high at L band, while complimentary observations at K band probe hotter material with higher angular resolution. These multiwavelength, multiepoch data allow us to differentiate the secondary stellar emission from disk emission and deeply probe the structure of the circumbinary disk at small angular separations. We constrain architectural properties of the system by fitting geometric disk and companion models to the K - and L -band data. From these models, we constrain the astrometric and photometric properties of the stellar binary and update the orbit, placing the tightest estimates to date on the V892 Tau orbital parameters. We also constrain the geometric structure of the circumbinary disk, and resolve a circumprimary disk for the first time. 
    more » « less
  6. Abstract Photonic lanterns (PLs) are tapered waveguides that gradually transition from a multimode fiber geometry to a bundle of single-mode fibers (SMFs). They can efficiently couple multimode telescope light into a multimode fiber entrance at the focal plane and convert it into multiple single-mode beams. Thus, each SMF samples its unique mode (lantern principal mode) of the telescope light in the pupil, analogous to subapertures in aperture masking interferometry (AMI). Coherent imaging with PLs can be enabled by the interference of SMF outputs and applying phase modulation, which can be achieved using a photonic chip beam combiner at the backend (e.g., the ABCD beam combiner). In this study, we investigate the potential of coherent imaging by the interference of SMF outputs of a PL with a single telescope. We demonstrate that the visibilities that can be measured from a PL are mutual intensities incident on the pupil weighted by the cross correlation of a pair of lantern modes. From numerically simulated lantern principal modes of a 6-port PL, we find that interferometric observables using a PL behave similarly to separated-aperture visibilities for simple models on small angular scales (<λ/D) but with greater sensitivity to symmetries and capability to break phase angle degeneracies. Furthermore, we present simulated observations with wave front errors (WFEs) and compare them to AMI. Despite the redundancy caused by extended lantern principal modes, spatial filtering offers stability to WFEs. Our simulated observations suggest that PLs may offer significant benefits in the photon-noise-limited regime and in resolving small angular scales at the low-contrast regime. 
    more » « less
  7. Abstract We present the highest-angular-resolution infrared monitoring of LkCa 15, a young solar analog hosting a transition disk. This system has been the subject of a number of direct-imaging studies from the millimeter through the optical, which have revealed multiple protoplanetary disk rings as well as three orbiting protoplanet candidates detected in infrared continuum emission (one of which was simultaneously seen at Hα). We use high-angular-resolution infrared imaging from 2014 to 2020 to systematically monitor these infrared signals and determine their physical origin. We find that three self-luminous protoplanets cannot explain the positional evolution of the infrared sources since the longer time baseline images lack the coherent orbital motion that would be expected for companions. However, the data still strongly prefer a time-variable morphology that cannot be reproduced by static scattered-light disk models. The multiepoch observations suggest the presence of complex and dynamic substructures moving through the forward-scattering side of the disk at ∼20 au or quickly varying shadowing by closer-in material. We explore whether the previous Hαdetection of one candidate would be inconsistent with this scenario and in the process develop an analytical signal-to-noise penalty for Hαexcesses detected near forward-scattered light. Under these new noise considerations, the Hαdetection is not strongly inconsistent with forward scattering, making the dynamic LkCa 15 disk a natural explanation for both the infrared and Hαdata. 
    more » « less